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Abstract. Using molecular dynamics computer simulations we investigate the out-of-equilibrium
dynamics of a Lennard-Jones system after a quench from a high temperature to one below the glass
transition temperature. By studying the radial distribution function we obtain evidence that during
the aging the system is very close to the critical surface of mode-coupling theory. Furthermore, we
show that two-time correlation functions show a strong dependence on the waiting time elapsed
since the quench and that their shape is very different from the one in equilibrium. By investigating
the temperature and time dependence of the frequency distribution of the normal modes we show that
the energy of the inherent structures can be used to define an effective (time-dependent) temperature
of the aging system.

1. Introduction

In the last few years ample evidence has been accumulated that the mode-coupling theory of
the glass transition (MCT) gives a reliable description of the dynamics of simple supercooled
liquids on a qualitative as well as quantitative level [1]. Recently it has even been documented
that some aspects of the dynamics of strong glass formers are also described well by the
theory [2]. Thus we can conclude that many of the key aspects of the dynamics of super-
cooled liquids are understood in a quite satisfactory way. This is not yet the case for the
dynamics of glasses below the glass transition temperature, i.e. in that temperature regime in
which the equilibrium relaxation time significantly exceeds the timescale of the experiment.
Only relatively recently have first attempts been made to understand this out-of-equilibrium
dynamics within the framework of statistical mechanics and thermodynamics [3]. In particular
it was found that, for certain systems, the equations of motion describing the dynamics below
Tg are formally quite similar to the MCT equations, which, as discussed above, describe well
the relaxation dynamics above Tg . Whether or not these out-of-equilibrium theories will be
equally successful in describing the dynamics of structural glasses below Tg is currently not
known and in the present paper we discuss some computer simulations which have been carried
out to test these theories.

2. Model and details of the simulations

The system that we consider is a binary (80:20) mixture of particles which interact with a
Lennard-Jones potential, Vαβ = 4εαβ[(σαβ/r)12 − (σαβ/r)

6]. Here α, β ∈ {A,B} denote the
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species of the particles, and the parameters εαβ and σαβ are given by εAA = 1.0, σAA = 1.0,
εAB = 1.5, σAB = 0.8, εBB = 0.5, and σBB = 0.88. This potential is truncated and shifted at
a distance σαβ . In the following we will use σAA and εAA as the units of length and energy,
respectively (setting the Boltzmann constant kB = 1.0). Time will be measured in units of√

[mσ 2
AA/48εAA], where m is the mass of the particles.

The equations of motion have been integrated with the velocity form of the Verlet
algorithm, using a step size of 0.02. The numbers of A and B particles were 800 and 200,
respectively, and the size of the box was (9.4)3.

In the past the equilibrium dynamics of this system has been determined in great
detail [4, 5]. In particular it was shown that at low temperatures the relaxation dynamics
is described very well by MCT with a critical temperature of Tc = 0.435. To investigate the
aging dynamics we therefore equilibrated the system at the high initial temperature Ti = 5.0
and quenched it at time zero to a final temperature Tf ∈ {0.1, 0.2, 0.3, 0.4, 0.435}. This
quench was done by coupling the particles every 50 time steps to a stochastic heat bath which
was kept on during the subsequent propagation of the system at low (kinetic) temperature. In
order to improve the statistics of the results we averaged over 8–10 different realizations of
the system.

3. Results

Within the framework of the idealized version of MCT the aging process is viewed as a slow
approach of the system to the so-called ‘critical surface’ of MCT. This surface is a hyper-
surface in the parameter space of the coupling constants, which in the case of a structural glass
are given by the magnitude of S(q), the static structure factor at wave-vector q, and divides
this space into a region in which the system is liquid-like and one in which it is solid-like,
i.e. a glass. (In order to avoid some mathematical subtleties we consider only a discrete and
finite set of wave-vectors; thus the parameter space is finite dimensional.) In order to check
whether or not this surface does indeed have any relevance for the aging dynamics of our
system we calculated the time dependence of gAA(r), the radial distribution function for two
A particles, a quantity which is closely related to the static structure factor. In figure 1 we
show gAA for different times t after the quench (main figure). From this graph we see that
immediately after the quench the function changes rapidly (compare the curves for t = 0 and
t = 10) but soon afterwards shows only a very weak time dependence and then can soon be
considered as constant within the accuracy of the data. That this limiting curve depends on the
final temperature Tf of the quench is shown in the inset of the figure, where we show gAA(r)

for other values of Tf . We see that with decreasing Tf the height of the main peak increases
and its width decreases. The reasons for this are that at such low temperatures the particles
vibrate in the cages formed by their neighbours and that the size of this cage decreases with
decreasing temperature. Note that this dependence demonstrates that for different values of
Tf the system populates states in different regions in configuration space.

If the view put forward by MCT is correct, these states should all be close to the critical
surface discussed above. In order to check this prediction we calculated the area under the first
peak in gAA(r). This area is roughly proportional to the height of the main peak in the static
structure factor and previous calculations have shown [6,7] that for simple systems such as the
present one this is the most relevant coupling parameter, i.e. the most relevant direction in the
parameter space of the coupling constants. In figure 2 we show this area c(t) for the different
temperatures Tf , i.e.

c(t) = 4π
∫ rc

0
r2gAA(t) dr
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Figure 1. Main figure: the radial distribution function for the A particles for different times for
Tf = 0.4. The times are t = 0, i.e. before the quench, t = 10, 100, 1000, 10 000, and 63 100 time
units. Inset: the same quantity at t = 63 100 for different values of Tf .
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Figure 2. Main figure: the time dependence of the area under the first peak in gAA(r) for diff-
erent values of Tf . The rightmost curve is the same quantity for the equilibrium case. Inset: an
enlargement of the equilibrium curve around the critical temperature of MCT.
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where rc is the location of the minimum between the first and second peaks in gAA(r). (Note
that c is nothing else than the average number of A particles that surround an A particle.) The
different symbols correspond to times 0, 10, 40, 60, 100, 160, 250, 400, 630, 1000, 1580,
2510, 3980, 6310, 10 000, 15 850, 25 120, 39 810, and 63 100, and are thus spaced roughly
equidistantly on a logarithmic time axis. (In order to expand the axis at low temperatures
we chose a logarithmic temperature scale.) From the main figure we recognize that at the
beginning the area does indeed depend strongly on time, but that at intermediate and long
times c(t) is essentially constant within the noise of the data (see the inset). We see that
within the timescale covered, the value of c(t) changes only by about 6%. That this small
change is nevertheless very significant is demonstrated by the rightmost curve (filled circles)
by which the equilibrium value of c at different temperatures is shown [4, 13]. From that
curve we see that in the temperature range 5.0 � T � 0.446 the area changes also only by
about 6%, despite the fact that the dynamics of the system slows down by about five orders of
magnitude [4].

The most relevant information from this graph is that the value of c(t) at long times seems
to be almost independent of Tf , thus giving evidence that at these times the system is indeed
close to the critical surface of MCT. That this is indeed the critical surface can be seen from
the inset where we show an enlargement of the equilibrium curve at low temperatures. From
previous investigations we know that at these temperatures the (equilibrium) system is very
close to its critical temperature and that therefore the values of c of the equilibrium curve are
very close to the critical ones, which are around 11.93. From the inset we recognize that also
the long-time values of c(t) are very close to this number, which is thus evidence that also the
aging systems are, at long times, quite close to the critical surface. A careful inspection of
the main figure reveals, however, that the curves for low values of Tf are slightly below this
critical value, an observation which we will discuss below.

From figures 1 and 2 we see that during the aging process the time dependence of the radial
distribution function is rather weak. This situation is typical for so-called ‘one-time quantities’,
i.e. observables which in equilibrium are constant. (Below we will discuss exceptions to this
trend.) A much stronger time dependence is found for the so-called ‘two-time quantities’,
i.e. the generalizations of the equilibrium time correlation functions to the out-of-equilibrium
case. In equilibrium a time auto-correlation function of an observable y(t) depends only on the
time difference, i.e. 〈y(tw)y(tw + τ)〉 = 〈y(τ)y(0)〉, where 〈·〉 is the thermodynamic average.
This equality no longer holds for the out-of-equilibrium case, since due to the generation of
the out-of-equilibrium situation the time-translation invariance of the system is lost. Therefore
it is necessary to keep track of both times: tw, the time elapsed since the quench, and τ , the
time elapsed since the start of the measurement. In the following we will study the case where
the observable is ρs(k, t), the space Fourier transform of the density of a tagged particle at
wave-vector k. This quantity is related to the positions of the particles via

δρs(k, t) = exp[ik · rj (t)]. (1)

In equilibrium the resulting time correlation function is the so-called incoherent inter-
mediate-scattering function Fs(k, t) = 〈ρs(k, t)ρs(−k, 0)〉 which can be measured in
scattering experiments. For the out-of-equilibrium case we generalize this to

Ck(tw + τ, tw) = 1

N

∑
j

exp[ik · (rj (tw + τ)− rj (τ )]. (2)

(Note that these last equations can be trivially generalized to multi-component systems.)
In figure 3 we show the τ -dependence of Ck(tw + τ, tw) for the A particles for different waiting
times tw. The value of the wave-vector is k = 7.23, the location of the main peak in the structure
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Figure 3. The time dependence of the generalization of the incoherent intermediate-scattering
function to the out-of-equilibrium case. The different curves correspond to different waiting times.
Tf = 0.4. The dashed curve is the equilibrium curve at 0.446.

factor for the A–A correlation. (The curves for other values of k, as well as the curves for the
B particles, look qualitatively similar.) From this figure we recognize that this time correlation
function shows a very strong waiting time dependence, thus showing that the investigation
of aging effects is much easier when one considers two-time quantities instead of one-time
quantities (figures 1 and 2). Note that this waiting time dependence is not found at short times
τ , if tw is large, in that in this time regime the different curves collapse onto a master curve.
In this time regime the particles are still inside the cage formed by their neighbours and thus
we conclude from the figure that this vibrational motion becomes independent of the waiting
time, if the latter is large. In reference [8] evidence was given that the approach of the curves
to the plateau is given by a power law, in agreement with the mean-field theories.

For larger times τ , the particle starts to leave the above-mentioned cage (the correlator starts
to fall below the quasiplateau at intermediate times) and from the figure we see that the time at
which this happens increases with increasing tw in that the timescale for the second relaxation
step increases rapidly with tw. As has been demonstrated elsewhere [9], this relaxation time
scales roughly like t0.9w , i.e. it shows a sub-aging behaviour.

Also included in figure 3 is the equilibrium curve at T = 0.446 for the same wave-vector.
Comparing this curve with the out-of-equilibrium curves for large tw shows that the height of
the plateau is very similar. What is, however, very different is the second relaxation process,
in that the equilibrium curve decays much more rapidly, i.e. has a larger slope, than the aging
curves. A detailed analysis shows that the former curve is approximated well by a Kohlrausch–
Williams–Watts function [4], exp(−(τ/τ0)

β), whereas the latter curves are power laws, with
an exponent that depends on k but not on the waiting time [8, 10].

The curves in figure 3 are for the final temperature Tf = 0.4, i.e. just about 10% below
the critical temperature of MCT (Tc = 0.435). In order to see how Tf affects the relaxation we
show in figure 4 the same type of correlation function as in figure 3, but this time for Tf = 0.1.
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Figure 4. The time dependence of the generalization of the incoherent intermediate-scattering
function to the out-of-equilibrium case for Tf = 0.1

Although the overall behaviours of these curves are similar to the ones for the higher Tf , some
significant differences are found. First of all we see that the height of the plateau, fc(k), is now
quite a bit larger than that for Tf = 0.4. This change can easily be understood by recalling that
for short times the motion of the particles is dominated by their rattling inside the cage. To a
first approximation this rattling can be described by a superposition of harmonic oscillators and
thus their amplitude will be proportional to Tf . Thus we expect 1 − fc(k) to be proportional
to Tf , and an inspection of the curves in figures 3 and 4 shows that this is indeed the case.
More noteworthy is the observation that for large tw the curves seem to show a second plateau
at long times, which seems not to be present for Tf = 0.4.

In order to understand the origin of this second plateau it is useful to look at the individual
runs for Tf = 0.1, which are shown for tw = 103 in the inset of figure 4. From this inset we see
that the different curves show a relatively sharp drop in the time range 2 × 102 � τ � 2 × 104

and then are almost constant. Note that the time at which this drop occurs depends on the
realization. A careful analysis of the configurations just before and after a sudden drop shows
that this fast relaxation is related to a very cooperative motion of about 10% of the particles [8].
Thus it seems that this mechanism is the most effective way to release the stress that is in the
configuration due to the quench. This is in contrast to the behaviour at higher values of Tf
in that there the stress is smaller and thus the system can remove it in a more gradual way,
i.e. without the occurrence of the ‘earthquakes’ that are seen at the lower temperatures.

In the remaining part of the paper we will discuss the aging of the system from the point of
view of the configuration space. For this we make use of the concept of the ‘inherent structure’
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(IS), which was introduced some time ago by Stillinger and Weber [11] and can be described as
follows: any point in configuration space can be used as the starting point of a steepest-descent
procedure in the potential energy of the system. The end-point of this steepest descent is the
IS for the starting point. Thus in this way the configuration space can be decomposed uniquely
into the basins of attraction of the IS (apart from some points of measure zero). By focusing
on the IS we therefore can study the evolution of the system during the aging process without
it being disturbed by the vibrational part of the particle motion.

In figure 5 we show the temperature dependence of eIS, the potential energy of the system in
the IS in equilibrium (figure 5(a); see also reference [5]). We recognize that at high temperatures
eIS is basically constant and starts to decrease quickly below T ≈ 1.0 which shows that the
energy landscape, as characterized by the height of the local minima, starts to change only
when the system enters the supercooled regime. In figure 5(b) we show the time dependence of
eIS for the different final temperatures investigated. We see that the curves for small Tf show
three regimes. (Although the curves with higher Tf show only two regimes, we will argue
below that they would also show a third regime if one were able to continue the simulation
for longer times.) The first regime is observed at short times and in it eIS(t) is essentially
independent of time. After this time regime, eIS(t) enters the second regime, during which the
system is able to decrease its energy. After a certain time, eIS crosses over to a weaker time
dependence and thus the system enters the third regime.
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Figure 5. The temperature and time dependence of the energy of the IS; (a) equilibrium; (b) out
of equilibrium. Reproduced from reference [15].

In order to understand these two latter time regimes it is useful to recall some results
which have been obtained by analysing the instantaneous normal modes of supercooled liquids
in equilibrium [12]. Although these results have been obtained for supercooled water it is
likely that they can be transferred to the present systems as well. What has been shown in
reference [12] is that the number of modes that lead the system to a new local minimum
decreases with decreasing temperature and vanishes at the MCT temperature Tc. Thus we
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can say that for temperatures above Tc the typical configuration of the system has at least one
unstable mode, i.e. direction of motion, whereas for temperatures below Tc the system mainly
sits in the vicinity of a local minimum, i.e. oscillates around a metastable location. Thus at Tc
the system has a thermal energy which is comparable with the difference in energy between
eIS(Tc) and the lowest-lying saddle point leading to a neighbouring minimum. Hence, for
temperatures below Tc the dynamics of the system becomes dominated by activated processes.
Note that the fact that the temperature dependence of the relaxation dynamics shows a strong
deviation from an Arrhenius temperature dependence [4, 14] implies that the height of the
effective barrier between two minima is not constant but increases with decreasing temperature
and, as explained above, at Tc this barrier is of the order of Tc.

All this holds for the equilibrium case. For the out-of-equilibrium case the situation is
qualitatively similar but there is the important difference that now the system has only the
thermal energy Tf . The three regimes seen in figure 5 can thus be explained as follows.
In the first regime the typical configurations of the system are still quite similar to the ones
found in equilibrium at high temperatures, i.e. close to the initial temperature. In this part
of configuration space the effective barriers between adjacent minima are relatively small
but nevertheless noticeable. Since it takes the system some time to find configurations with
lower energy, eIS does not decrease. Only after some time does the system manage to find
configurations which are energetically more favourable and hence does eIS start to decrease,
i.e. in figure 5 eIS(t) enters the second regime. The time before such better configurations
are found increases with decreasing Tf , since a smaller kinetic energy makes it harder for the
system to cross the barriers.

During the aging process the system will lower its energy and start to explore configurations
which, in equilibrium, correspond to lower and lower temperatures. After some time it will
have reached that part of configuration space in which the effective barriers to cross from
one minimum to the neighbouring one have a height kBTf and thus the relaxation mechanism
will change to an activated process. Since this type of relaxation is less efficient than the
one in which the system still finds unstable modes, the rate at which the energy decreases
is decreasing. Thus the eIS(t) curve shows a bend, which can be seen in figure 5 when the
system is entering the third regime. Note that this bend in the eIS(t) curves should occur at a
value of eIS which increases with decreasing Tf and this is exactly what is seen in figure 5. In
particular we expect from the reasoning above that if Tf is very close to Tc, the third regime
should hardly be visible, and this expectation is indeed supported by figure 5.

Since eIS seems to be a quite sensitive quantity for locating the position of the system in
configuration space, and this is in contrast to the case for most other one-time quantities, we
can use it to define an effective temperature Te(t) during the aging process. For this we read
off the value of eIS(t) of the aging system at a time t , and define Te(t) to be that temperature T
at which the system in equilibrium has the same value of eIS (see figure 5). In order to check
whether this definition of Te(t) has any physical meaning it is necessary to show that from
the knowledge of Te(t) it is possible to calculate other properties of the aging system. One
such property is e.g. the distribution of the frequencies of the normal modes of the system. We
have done this and found [15] that the value of Te(t) does indeed allow one to calculate this
distribution. In the present paper we show, however, only ν̄, the first moment of this distribution
(see figure 6), since it has a better statistical accuracy than the distribution itself. In figure 6
we show ν̄ for the equilibrium case as well as the aging case (left-hand and right-hand panel,
respectively). A comparison of these curves with the one for eIS in figure 5 shows immediately
that the two sets of curves are very similar. Hence it follows that Te(t) can indeed be used to
predict some of the properties of the aging system and thus can indeed be considered as an
effective temperature.
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Figure 6. The temperature and time dependence of the first moment of the normal-mode spectrum:
(a) equilibrium; (b) out of equilibrium. Reproduced from reference [15].

4. Summary and conclusions

We have investigated the properties of a simple glass former after a quench from a high
temperature to a low temperature. From the radial distribution function we have evidence that
for long times after the quench the system is very close to the critical surface of the MCT.
Note that, since this surface can be calculated from the structure factor, it will in the out-of-
equilibrium situation be a function of Tf , since S(q) depends not only on the IS but also on
the thermal broadening of this configuration. This is the explanation for the fact that during
the aging the system is ‘stuck’ in parts of configuration space that depend on the value of Tf .
At long times, typical configurations have the property that if their IS is thermally broadened
with a temperature Tf , the resulting structure factor is very close to the critical surface of the
MCT equations. Following the conclusions of reference [12], one can rephrase this by saying
that for these configurations the typical barrier which leads to a neighbouring minimum is of
the order of Tf .

Finally we mention that elsewhere we have shown that the IS can be used to determine
the configurational entropy of the system at low temperatures [16], which in turn allows us to
calculate such interesting quantities as the Kauzman temperature.
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